随后将更正的一致缺陷:如果将NULL值与使用ALL、ANY或SOME的子查询进行比较,而且子查询返回空结果,比较操作将对NULL的非标准结果进行评估,而不是TRUE或FALSE。
子查询的外部语句可以是SELECT、INSERT、UPDATE、DELETE、SET或DO中的任何一个。
仅部分支持行比较操作:
· 对于expr IN (subquery),expr可以是n-tuple(通过行构造程序语法指定),而且子查询能返回n-tuples个行。
· 对于expr op {ALL|ANY|SOME} (subquery),expr必须是标度值,子查询必须是列子查询,不能返回多列行。
换句话讲,对于返回n-tuples行的子查询,支持:
(val_1, ..., val_n) IN (subquery)
但不支持:
(val_1, ..., val_n) op {ALL|ANY|SOME} (subquery)
支持针对IN的行比较,但不支持针对其他的行比较,原因在于,IN实施是通过将其重新编写为“=”比较和AND操作的序列完成的。该方法不能用于ALL、ANY或SOME。
未良好优化行构造程序。下面的两个表达式是等效的,但只有第2个表达式能被优化:
(col1, col2, ...) = (val1, val2, ...)
col1 = val1 AND col2 = val2 AND ...
对于IN的子查询优化不如对“=”的优化那样有效。
对于不良IN性能的一种典型情况是,当子查询返回少量行,但外部查询返回将与子查询结果相比较的大量行。
FROM子句中的子查询不能与子查询有关系。在评估外部查询之前,将对它们进行具体化处理(执行以生成结果集),因此,不能按照外部查询的行对它们进行评估。
一般而言,不能更改表,并从子查询内的相同表进行选择。例如,该限制适用于具有下述形式的语句:
DELETE FROM t WHERE ... (SELECT ... FROM t ...);
UPDATE t ... WHERE col = (SELECT ... FROM t ...);
{INSERT|REPLACE} INTO t (SELECT ... FROM t ...);
例外:如果为FROM子句中更改的表使用子查询,前述禁令将不再适用。例如:
UPDATE t ... WHERE col = (SELECT (SELECT ... FROM t...) AS _t ...);
禁令在此不适用,这是因为FROM中的子查询已被具体化为临时表,因此“t”中的相关行已在满足“t”条件的情况下、在更新时被选中。
与子查询相比,针对联合的优化程序更成熟,因此,在很多情况下,如果将其改写为join(联合),使用子查询的语句能够更有效地执行。
但下述情形例外:IN子查询可被改写为SELECT DISTINCT联合。例如:
SELECT col FROM t1 WHERE id_col IN (SELECT id_col2 FROM t2 WHERE condition);
可将该语句改写为:
SELECT DISTINCT col FROM t1, t2 WHERE t1.id_col = t2.id_col AND condition;
但在该情况下,联合需要额外的DISTINCT操作,而且与子查询相比,效率并不高。
可能的未来优化:MySQL不改写针对子查询评估的联合顺序。在某些情况下,如果MySQL将其改写为联合,能够更有效地执行子查询。这样,优化程序就能在更多的执行方案间进行选择。例如,它能决定是否首先读取某一表或其他。
例如:
SELECT a FROM outer_table AS ot
WHERE a IN (SELECT a FROM inner_table AS it WHERE ot.b = it.b);
对于该查询,MySQL总会首先扫描outer_table,如然后针对每一行在inner_table上执行子查询。如果outer_table有很多行而inner_table只有少量行,查询的执行速度或许要慢于本应有的速度。
前述查询可改写为:
SELECT a FROM outer_table AS ot, inner_table AS it
WHERE ot.a = it.a AND ot.b = it.b;
在该情况下,我们能扫描小的表(inner_table)并查询outer_table中的行,如果在“ot.a,ot.b”上有索引,速度会更快。
可能的未来优化:对外部查询的每一行评估关联的子查询。更好的方法是,如果外部行的值与之前的行相比没有变化,不对子查询进行再次评估,而是使用以前的结果。
可能的未来优化:通过将结果具体化到临时表,而且该表不使用索引,对FROM子句中的子查询进行评估。在查询中与其他表进行比较时,尽管可能是有用的,但不允许使用索引。
可能的未来优化:如果FROM子句中的子查询类似于可施加MERGE算法的视图,改写查询并采用MERGE算法,以便能够使用索引。下述语句包含这类子查询:
SELECT * FROM (SELECT * FROM t1 WHERE t1.t1_col) AS _t1, t2 WHERE t2.t2_col;
该语句可被改写为联合,如下所示:
SELECT * FROM t1, t2 WHERE t1.t1_col AND t2.t2_col;
这类改写具有两个优点:
1. 避免使用那些不能使用索引的临时表。在改写的查询中,优化程序可在t1上使用索引。
2. 优化程序在选择不同的执行计划方面具有更大的自由。例如,将查询改写为联合,那么就允许优化程序首先使用t1或t2。
可能的未来优化:对于没有关联子查询的IN、= ANY、<> ANY、= ALL、以及<> ALL,为结果使用“内存中”哈希处理,或对较大的结果使用具有索引的临时表。例如:
SELECT a FROM big_table AS bt
WHERE non_key_field IN (SELECT non_key_field FROM table WHERE condition)
在该情况下,可创建临时表:
CREATE TABLE t (key (non_key_field))
(SELECT non_key_field FROM table WHERE condition)
然后,对big_table中的每一行,根据bt.non_key_field,在“t”中进行键查找。