spark streaming 读取kafka数据案例scala代码:
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
import org.apache.spark.sql.SparkSession
object KafkaTest extends Serializable {
def main(args: Array[String]): Unit = {
val conf = new SparkConf();
conf.setMaster("local")
conf.setAppName("wangjk")
conf.set("spark.testing.memory", "2147480000")
val ssc = new StreamingContext(conf, Seconds.apply(5))
val sess = SparkSession.builder().config(conf).getOrCreate
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> "datatwo:9092,datathree:9092,datafour:9092",// kafka 集群
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "dsffaa",
"auto.offset.reset" -> "earliest", // 每次都是从头开始消费(from-beginning),可配置其他消费方式
"enable.auto.commit" -> (false: java.lang.Boolean)
)
val topics = Array("air") //主题,可配置多个
val stream = KafkaUtils.createDirectStream[String, String](
ssc,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
val rd2=stream.map(e=>(e.value())) //e.value() 是kafka消息内容,e.key为空值
rd2.print()
ssc.start()
ssc.awaitTermination()
}
}